(Ⅱ)當時,求點到平面的距離, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系xOy中,設曲線C1所圍成的封閉圖形的面積為,曲線C1上的點到原點O的最短距離為.以曲線C1與坐標軸的交點為頂點的橢圓記為C2
(1)求橢圓C2的標準方程;
(2)設AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.Ml上的點(與O不重合).
①若MO=2OA,當點A在橢圓C2上運動時,求點M的軌跡方程;
②若Ml與橢圓C2的交點,求△AMB的面積的最小值.

查看答案和解析>>

在平面直角坐標系xOy中,設曲線C1所圍成的封閉圖形的面積為,曲線C1上的點到原點O的最短距離為.以曲線C1與坐標軸的交點為頂點的橢圓記為C2
(1)求橢圓C2的標準方程;
(2)設AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.Ml上的點(與O不重合).
①若MO=2OA,當點A在橢圓C2上運動時,求點M的軌跡方程;
②若Ml與橢圓C2的交點,求△AMB的面積的最小值.

查看答案和解析>>

在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4,設圓C的半徑為1,圓心C在直線l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)當圓心C在直線l上移動時,求點A到圓C上的點的最短距離.

查看答案和解析>>

 如圖,在正三棱柱

(I)若,求點到平面的距離;  

(Ⅱ)當為何值時,二面角的正弦值為?

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知平面內一動點 P到定點的距離等于它到定直線的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當點 P(x,y)(x≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線所得的弦長;
(3)當點 P(x,y)(x≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视