(1)若到軸的距離的積為.求該拋物線方程及的面積的最小值. 查看更多

 

題目列表(包括答案和解析)

已知拋物線E的頂點在原點,焦點F在y軸正半軸上,拋物線上一點P(m,4)到其準線的距離為5,過點F的直線l依次與拋物線E及圓x2+(y-1)2=1交于A、C、D、B四點.
(1)求拋物線E的方程;
(2)探究|AC|•|BD|是否為定值,若是,求出該定值;若不是,請說明理由;
(3)過點F作一條直線m與直線l垂直,且與拋物線交于M、N兩點,求四邊形AMBN面積最小值.

查看答案和解析>>

已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數學問題的正確結論后,將其作為條件之一,提出與原來問題有關的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側面面積之和的最小值”.
現有正確命題:過點A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設點P關于x軸的對稱點為R,則直線RQ必過焦點F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

已知拋物線上的任意一點到該拋物線焦點的距離比該點到軸的距離多1.

(1)求的值;
(2)如圖所示,過定點(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、四點.
(i)求四邊形面積的最小值;
(ii)設線段的中點分別為、兩點,試問:直線是否過定點?若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

已知拋物線上的任意一點到該拋物線焦點的距離比該點到軸的距離多1.

(1)求的值;
(2)如圖所示,過定點(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、四點.
(i)求四邊形面積的最小值;
(ii)設線段、的中點分別為兩點,試問:直線是否過定點?若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數學問題的正確結論后,將其作為條件之一,提出與原來問題有關的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側棱長為3,求該正四棱錐的體積”.求出體積數學公式后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為數學公式,求側棱長”;也可以是“若正四棱錐的體積為數學公式,求所有側面面積之和的最小值”.
現有正確命題:過點數學公式的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設點P關于x軸的對稱點為R,則直線RQ必過焦點F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视