題目列表(包括答案和解析)
16.(2)解(1)當a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,
這時函數g(x)只有兩個零點,所以(1)不對
(2)若a=-1,-2<b<0,則把函數f(x)作關于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點
(3)當a<0時, y=af(x)根據定義可斷定是奇函數,如果b≠0,把奇函數y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關于原點對稱了,肯定不是奇函數;當b=0時才是奇函數,所以(3)不對。所以正確的只有(2)
一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數是綠球個數的兩倍,黃球個數是綠球個數的一半,現在從該盒中隨機取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分數Y的分布列.
設函數f(x)=,g(x)=ax2+bx(a,b∈R,a≠0).若y=f(x)的圖像與y=g(x)的圖像有且僅有兩個不同的公共點A(x1,y1),B(x2,y2),則下列判斷正確的是 ( )
A.當a<0時,x1+x2<0,y1+y2>0
B.當a<0時,x1+x2>0,y1+y2<0
C.當a>0時,x1+x2<0,y1+y2<0
D.當a>0時,x1+x2>0,y1+y2>0
(本小題滿分12分)設函數f(x)的定義域是R,對于任意實數m,n,恒有f(m+n)=f(m)f(n),且當x>0時,0<f(x)<1。
(1)求證:f(0)=1,且當x<0時,有f(x)>1;
(2)判斷f(x)在R上的單調性;
⑶設集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍。
(本小題滿分12分) 設函數f(x)的定義域是R,對于任意實數m,n,恒有f(m+n)=f(m)f(n),且當x>0時,0<f(x)<1。
(1)求證:f(0)=1,且當x<0時,有f(x)>1;
(2)判斷f(x)在R上的單調性;
⑶設集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍。
若函數f(x)為奇函數,且當x>0時,f(x)=x-1,則當x<0時,有( )
A.f(x)>0 B.f(x)<0
C.f(x)f(-x)≤0 D.f(x)-f(-x)>0
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com