由此證得:Sn>lgbn+1. 查看更多

 

題目列表(包括答案和解析)

在復平面內, 是原點,向量對應的復數是,=2+i。

(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數;

(Ⅱ)復數,對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。

【解析】第一問中利用復數的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

 

查看答案和解析>>

已知數列{bn}是等差數列,b1=1,b1+b2+…+b10=100.

 

(Ⅰ)求數列{bn}的通項bn;

(Ⅱ)設數列{an}的通項an=lg(1+),記Sn是數列{an}的前n項和,試比較Snlgbn+1的大小,并證明你的結論.

查看答案和解析>>

已知中,,.設,記.

(1)   求的解析式及定義域;

(2)設,是否存在實數,使函數的值域為?若存在,求出的值;若不存在,請說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得,

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當m>0的值域為m+1=3/2,n=1/2

2當m<0,不滿足的值域為;

因而存在實數m=1/2的值域為.

 

查看答案和解析>>

已知函數f(x)=,為常數。

(I)當=1時,求f(x)的單調區間;

(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。

【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則在區間[1,2]上恒成立,即即,或在區間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數,在(1,上是減函數!6分

(2)。若函數f(x)在區間[1,2]上為單調函數,

在區間[1,2]上恒成立!,或在區間[1,2]上恒成立。即,或在區間[1,2]上恒成立。

又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

13、已知數列{an}的通項公式為an=(2n-1)•2n,我們用錯位相減法求其前n項和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數列{bn}的通項公式為bn=n2•2n,
則其前n項和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视