題目列表(包括答案和解析)
已知函數f(x)=alnx+bx,且f(1)= -1,f′(1)=0,
⑴求f(x);
⑵求f(x)的最大值;
⑶若x>0,y>0,證明:lnx+lny≤.
本題主要考查函數、導數的基本知識、函數性質的處理以及不等式的綜合問題,同時考查考生用函數放縮的方法證明不等式的能力.
經過長期觀測得到:在交通繁忙的時段內,某公路段汽車的車流量y(千輛/小時)與汽車的平均速度v(km/h)之間的函數關系為y=(v>0).
(1)在該時段內,當汽車的平均速度v為多少時,車流量最大?最大車流量為多少?(精確到0.1千輛/小時)
(2)若要求在該時段內車流量超過10千輛/小時,則汽車的平均速度應在什么范圍內?
本題主要考查函數、不等式等基本知識,考查應用數學知識分析問題和解決問題的能力.
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?
(II)當AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.
【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當且僅當
(3)令
∴當x
> 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=
在[6,+∞]上也單調遞增.
∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
A、y=2sin(
| ||||
B、y=2sin(-
| ||||
C、y=2sin(2x+
| ||||
D、y=2sin(2x-
|
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com