題目列表(包括答案和解析)
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?
(II)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當且僅當
(3)令
∴當x
> 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=
在[6,+∞]上也單調遞增.
∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
x |
x+2 |
x |
(2n-1)x+2n |
x |
(2n-1)x+2n |
D
[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-
)>logaa,0<1-
<a,由此解得1<x<
,因此不等式f(1-
)>1的解集是(1,
),選D.
已知中,
,
.設
,記
.
(1) 求的解析式及定義域;
(2)設,是否存在實數
,使函數
的值域為
?若存在,求出
的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在中,由
,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得
.顯然,
,則
1當m>0的值域為
m+1=3/2,n=1/2
2當m<0,不滿足
的值域為
;
因而存在實數m=1/2的值域為
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com