解: =2sinαcosα.∴k=2sinαcosα. 查看更多

 

題目列表(包括答案和解析)

閱讀材料:某同學求解sin18°的值其過程為:設α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡,得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設函數f(x)=ax3+1對任意x∈[-1,1]都有f(x)≥0成立,則實數a的值為
4
4

查看答案和解析>>

關于x的不等式
.
x+a2
1x
.
<0的解集為(-1,b).
(1)求實數a、b的值;
(2)若z1=a+bi,z2=cosα+isinα,且z1z2為純虛數,求
3sinα-2cosα
2sinα-cosα
的值.

查看答案和解析>>

(1)解方程4x-6×2x-16=0
(2)已知tan(π+θ)=-3求
3sinθ-2cosθ2sinθ+cosθ
的值.

查看答案和解析>>

2kπ-
π
4
≤α≤2kπ+
π
4
(k∈Z)
時,化簡:
1-2sinα•cosα
+
1+2sinα•cosα

查看答案和解析>>

已知
1-2sinαcosα
=cosα-sinα
,則α取值范圍是
[2kπ-
4
,2kπ+
π
4
],k∈Z
[2kπ-
4
,2kπ+
π
4
],k∈Z

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视