解:因為sin3x?sin3x+cos3xcos3x=(sin3xsinx)sin2x+(cos3xcosx)cos2x=[(cos2x-cos4x)sin2x+(cos2x+cos4x)cos2x]=[(sin2x+cos2x)cos2x+(cos2x-sin2x)cos4x]=(cos2x+cos2xcos4x)=cos2x(1+cos4x)=cos32x 查看更多

 

題目列表(包括答案和解析)

某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關系,在本校高三年級隨機調查了 50名學生.調査結果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據以上數據完成以下2×2列聯表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關系?

高中學生的作文水平與愛看課外書的2×2列聯表

 

愛看課外書

不愛看課外書

總計

作文水平好

 

 

 

作文水平一般

 

 

 

總計

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數或4的倍數的概率.

參考公式:,其中.

參考數據:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本試題主要考查了古典概型和列聯表中獨立性檢驗的運用。結合公式為判定兩個分類變量的相關性,

第二問中,確定

結合互斥事件的概率求解得到。

解:因為2×2列聯表如下

 

愛看課外書

不愛看課外書

總計

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

總計

 25

 25

 50

 

查看答案和解析>>

解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2


現有5名同學的物理和數學成績如下表:

物理

64

61

78

65

71

數學

66

63

88

76

73

(1)畫出散點圖;

(2)若具有線性相關關系,試求變量的回歸方程并求變量的回歸方程.

查看答案和解析>>

中,滿足,邊上的一點.

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若,=m  (m為正常數) 且邊上的三等分點.,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數量積設向量與向量的夾角為,則

=,得,又,則為所求

第二問因為,=m所以

(1)當時,則= 

(2)當時,則=

第三問中,解:設,因為,;

所以于是

從而

運用三角函數求解。

(Ⅰ)解:設向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因為,=m所以,

(1)當時,則=;-2分

(2)當時,則=;--2分

(Ⅲ)解:設,因為,;

所以于是

從而---2

==

=…………………………………2

,,則函數,在遞減,在上遞增,所以從而當時,

 

查看答案和解析>>

解:因為有負根,所以在y軸左側有交點,因此

某種產品的廣告支出x與銷售額y(單位:百萬元)之間有如下的對應關系

x

2

4

5

6

8

y

30

40

60

50

70

(1)假定xy之間具有線性相關關系,求回歸直線方程.

(2)若實際銷售額不少于60百萬元,則廣告支出應該不少于多少?

查看答案和解析>>

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 該函數的圖象可由 的圖象經過怎樣的平移和伸縮變換得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一問中,

變換分為三步,①把函數的圖象向右平移,得到函數的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;

第二問中因為,所以,則,又 ,,從而

進而得到結論。

(Ⅰ) 解:

!3

變換的步驟是:

①把函數的圖象向右平移,得到函數的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;…………………………………3

(Ⅱ) 解:因為,所以,則,又 ,,從而……2

(1)當時,;…………2

(2)當時;

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视