題目列表(包括答案和解析)
在中,滿足
,
是
邊上的一點.
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問中,利用向量的數量積設向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問因為,
=m所以
,
(1)當時,則
=
(2)當時,則
=
第三問中,解:設,因為
,
;
所以即
于是
得
從而
運用三角函數求解。
(Ⅰ)解:設向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為,
=m所以
,
(1)當時,則
=
;-2分
(2)當時,則
=
;--2分
(Ⅲ)解:設,因為
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數
,在
遞減,在
上遞增,所以
從而當
時,
如圖,在三棱柱中,
側面
,
為棱
上異于
的一點,
,已知
,求:
(Ⅰ)異面直線與
的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,、
分別為Y,Z軸建立空間直角坐標系.由于,
在三棱柱中有
,
設
又側面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有故二面角
的平面角
的大小為向量
與
的夾角.
平面直角坐標系內的向量都可以用一有序實數對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點這就是《數學
2》中已經得到的斜率公式.上述推導過程比《數學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:(1)
過點(2)
向量(A,B)與直線(3)
設直線那么,
(4)
點湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com