題目列表(包括答案和解析)
已知函數。
(1)求函數的最小正周期和最大值;
(2)求函數的增區間;
(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?
【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為
,最大值為
。
第二問中,函數的單調區間與函數
的單調區間相同。故當
,解得x的范圍即為所求的區間。
第三問中,利用圖像將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
解:(1)函數的最小正周期為
,最大值為
。
(2)函數的單調區間與函數
的單調區間相同。
即
所求的增區間為
,
即
所求的減區間為
,
。
(3)將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
在平面直角坐標系中,曲線
與坐標軸的交點都在圓
上.
(1)求圓的方程;
(2)若圓與直線
交于
、
兩點,且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關系的運用。
(1)曲線與
軸的交點為(0,1),
與軸的交點為(3+2
,0),(3-2
,0) 故可設
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因為圓與直線
交于
、
兩點,且
。聯立方程組得到結論。
某港口的水深(米)是時間
(
,單位:小時)的函數,下面是每天時間與水深的關系表:
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
經過長期觀測, 可近似的看成是函數
,(本小題滿分14分)
(1)根據以上數據,求出的解析式。
(2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?
【解析】第一問由表中數據可以看到:水深最大值為13,最小值為7,,
∴A+b=13, -A+b=7 解得 A=3, b=10
第二問要想船舶安全,必須深度,即
∴
解得:
得到結論。
已知冪函數滿足
。
(1)求實數k的值,并寫出相應的函數的解析式;
(2)對于(1)中的函數,試判斷是否存在正數m,使函數
,在區間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數的解析式的求解和函數的最值的運用。第一問中利用,冪函數滿足
,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,
,因此拋物線開口向下,對稱軸方程為:
,結合二次函數的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數滿足
,
因此,解得
,………………3分
因為,所以k=0,或k=1,當k=0時,
,
當k=1時,,綜上所述,k的值為0或1,
!6分
(2)函數,………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:
,
當時,
,因為在區間
上的最大值為5,
所以,或
…………………………………………10分
解得滿足題意
在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數列{cn}滿足
,求{cn}的前n項和Tn.
【解析】本試題主要是考查了等比數列的通項公式和求和的運用。第一問中,利用等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,,可得
,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問中,
,由第一問中知道
,然后利用裂項求和得到Tn.
解: (Ⅰ) 設:{an}的公差為d,
因為解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因為……………8分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com