當t≥時.對于任何≤t1≤t2.有S(t1)-S(t2)=(t1-t2)(1-). 查看更多

 

題目列表(包括答案和解析)

當p1,p2,…,pn均為正數時,稱
n
p1+p2+…+pn
為p1,p2,…,pn的“均倒數”.已知數列{an}的各項均為正數,且其前n項的“均倒數”為
1
2n+1

(Ⅰ)試求數列{an}的通項公式;
(Ⅱ)設cn=
an
2n+1
,試判斷并說明cn+1-cn(n∈N*)的符號;
(Ⅲ)已知bn=tan(t>0),記數列{bn}的前n項和為Sn,試求
Sn+1
Sn
的值;
(Ⅳ)設函數f(x)=-x2+4x-
an
2n+1
,是否存在最大的實數λ,使當x≤λ時,對于一切正整數n,都有f(x)≤0恒成立?

查看答案和解析>>

當p1,p2,…,pn均為正數時,稱
n
p1+p2+…+pn
為p1,p2,…,pn的“均倒數”.已知數列{an}的各項均為正數,且其前n項的“均倒數”為
1
2n+1

(1)求數列{an}的通項公式;
(2)設cn=
an
2n+1
(n∈N*),試比較cn+1與cn的大;
(3)設函數f(x)=-x2+4x-
an
2n+1
,是否存在最大的實數λ,使當x≤λ時,對于一切正整數n,都有f(x)≤0恒成立?

查看答案和解析>>

已知函數f(x)=ax2+bx+c,(a,b,c∈R且a≠0)
(1)當x=1時有最大值1,若x∈[m,n],(0<m<n)時,函數f(x)的值域為[
1
n
,
1
m
]
,證明:
f(m)
f(n)
=
n
m

(2)若b=4,c=-2時,對于給定正實數a有一個最小負數g(a),使得x∈[g(a),0]時,|f(x)|≤4恒成立,問a為何值時,g(a)最小,并求出這個最小值.

查看答案和解析>>

(2013•汕頭二模)已知動點P(x,y)與兩個定點M(-1,0),N(1,0)的連線的斜率之積等于常數λ(λ≠0)
(1)求動點P的軌跡C的方程;
(2)試根據λ的取值情況討論軌跡C的形狀;
(3)當λ=2時,對于平面上的定點E(-
3
,0),F(
3
,0)
,試探究軌跡C上是否存在點P,使得∠EPF=120°,若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

已知數列{an}的前n項的平均數的倒數為
1
2n+1
,
(1)求{an}的通項公式;
(2)設cn=
an
2n+1
,試判斷并說明cn+1-cn(n∈N*)的符號;
(3)設函數f(x)=-x2+4x-
an
2n+1
,是否存在最大的實數λ,當x≤λ時,對于一切自然數n,都有f(x)≤0.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视