求直線l上兩點(x1.y1).(x2.y2)的距離時.一般使用d=,當已知直線l的斜率k時.可以將上述公式變形為 查看更多

 

題目列表(包括答案和解析)

已知點A(x1,y1),B(x2,y2)是橢圓L:
x2
18
+
y2
9
=1
上不同的兩點,線段AB的中點為M(2,
1)

(1)求直線AB的方程;
(2)若線段AB的垂直平分線與橢圓L交于點C、D,試問四點A、B、C、D是否在同一個圓上,若是,求出該圓的方程;若不是,請說明理由.

查看答案和解析>>

設直線l(斜率存在)交拋物線y2=2px(p>0,且p是常數)于兩個不同點A(x1,y1),B(x2,y2),O為坐標原點,且滿足數學公式=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直線l的斜率與p之間的關系;
(2)求證:直線l過定點;
(3)設(1)中的定點為P,若點M在射線PA上,滿足數學公式,求點M的軌跡方程.

查看答案和解析>>

設直線l(斜率存在)交拋物線y2=2px(p>0,且p是常數)于兩個不同點A(x1,y1),B(x2,y2),O為坐標原點,且滿足=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直線l的斜率與p之間的關系;
(2)求證:直線l過定點;
(3)設(1)中的定點為P,若點M在射線PA上,滿足,求點M的軌跡方程.

查看答案和解析>>

設直線l(斜率存在)交拋物線y2=2px(p>0,且p是常數)于兩個不同點A(x1,y1),B(x2,y2),O為坐標原點,且滿足=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直線l的斜率與p之間的關系;
(2)求證:直線l過定點;
(3)設(1)中的定點為P,若點M在射線PA上,滿足,求點M的軌跡方程.

查看答案和解析>>

設直線l(斜率存在)交拋物線y2=2px(p>0,且p是常數)于兩個不同點A(x1,y1),B(x2,y2),O為坐標原點,且滿足=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直線l的斜率與p之間的關系;
(2)求證:直線l過定點;
(3)設(1)中的定點為P,若點M在射線PA上,滿足,求點M的軌跡方程.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视