題目列表(包括答案和解析)
已知
(1)求函數在
上的最小值
(2)對一切的恒成立,求實數a的取值范圍
(3)證明對一切,都有
成立
【解析】第一問中利用
當
時,
在
單調遞減,在
單調遞增
,當
,即
時,
,
第二問中,,則
設
,
則,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)當
時,
在
單調遞減,在
單調遞增
,當
,即
時,
,
…………4分
(2),則
設
,
則,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. 、
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com