解析:把已知方程化為標準方程.得+(y+sinθ)2=1. 查看更多

 

題目列表(包括答案和解析)

已知關于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:無論m取任何實數時,方程總有實數根;
(2)若關于x的二次函數y1=mx2-3(m-1)x+2m-3的圖象關于y軸對稱.
①求這個二次函數的解析式;
②已知一次函數y2=2x-2,證明:在實數范圍內,對于x的同一個值,這兩個函數所對應的函數值y1≥y2均成立;
(3)在(2)的條件下,若二次函數y3=ax2+bx+c的圖象經過點(-5,0),且在實數范圍內,對于x的同一個值,這三個函數所對應的函數值y1≥y3≥y2均成立.求二次函數y3=ax2+bx+c的解析式.

查看答案和解析>>

已知橢圓的標準方程為
x2
6-m
+
y2
m-1
=1
,
(1)若橢圓的焦點在x軸,求m的取值范圍;          
(2)試比較m=2與m=3時兩個橢圓哪個更扁.

查看答案和解析>>

已知橢圓的標準方程
x2
8
+
y2
9
=1,則橢圓的焦點坐標為
(0,1),(0,-1)
(0,1),(0,-1)
,離心率為
1
3
1
3

查看答案和解析>>

(2008•奉賢區二模)已知橢圓的標準方程為
x2
4
+
y2
3
=1
,則該橢圓的焦距為
2
2

查看答案和解析>>

已知橢圓中心在原點,焦點在y軸上,離心率為
3
3
,以原點為圓心,橢圓短半軸長為半徑的圓與直線y=x+2相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線x2=4y上的兩個動點,且滿足
AF
FB
 (λ>0)
,過點A,B分別作拋物線的兩條切線,設兩切線的交點為M,試推斷
FM
AB
是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视