解析:由已知得平移公式代入曲線C的方程.得y′-=cos(x′+).即y′=-sinx′+. 查看更多

 

題目列表(包括答案和解析)

若(x-i)i=y+2i,xy∈R,則復數xyi=________.

解析:由已知得:1+xi=y+2i,∴x=2,y=1,∴xyi=2+i.

查看答案和解析>>

已知在直角坐標系中,曲線C的參數方程為,在極坐標系(與直角坐標系取相同長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.

(1)求曲線C的直角坐標方程;

(2)求直線被曲線C截得的弦長;

查看答案和解析>>

學校要用三輛車從北湖校區把教師接到文廟校區,已知從北湖校區到文廟校區有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數的分布列和數學期望。

【解析】第一問中,由已知條件結合n此獨立重復試驗的概率公式可知,得

第二問中可能的取值為0,1,2,3  ,       

 , 

從而得到分布列和期望值

解:(I)由已知條件得 ,即,則的值為。

 (Ⅱ)可能的取值為0,1,2,3  ,       

 , 

   的分布列為:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

已知曲線C:(m∈R)

(1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

(2)     設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是

(2)當m=4時,曲線C的方程為,點A,B的坐標分別為,

,得

因為直線與曲線C交于不同的兩點,所以

設點M,N的坐標分別為,則

直線BM的方程為,點G的坐標為

因為直線AN和直線AG的斜率分別為

所以

,故A,G,N三點共線。

 

查看答案和解析>>

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视