令則即新坐標系的原點在原坐標系中的坐標為. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設平面PCD的法向量

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

若平移坐標軸,把坐標系的原點O移到點,在原坐標系下的坐標為(2,-1),則原坐標系中的曲線在新坐標系中的方程是:

         A.                              B.

         C.                              D.

                                              

查看答案和解析>>

經過坐標軸的平移后,點P的坐標由(1,-2)變成(-1,1),則原坐標系的原點在新坐標系下的坐標為


  1. A.
    (-2,3)
  2. B.
    (2,-3)
  3. C.
    (-3,2)
  4. D.
    (3,-2)

查看答案和解析>>

精英家教網如圖,在平面直角坐標系xOy中,角α,β的頂點與坐標原點重合,始邊與x軸的非負半軸重合,它們的終邊分別與單位圓相交于A,B兩點,若點A,B的坐標為(
3
5
4
5
)和(-
4
5
3
5
),則cos(α+β)的值為( 。
A、-
24
25
B、-
7
25
C、0
D、
24
25

查看答案和解析>>

本題設有(1)(2)(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)已知矩陣M=
1a
b1
N=
c2
0d
,且MN=
20
-20

(Ⅰ)求實數a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應的線性變換下的像的方程.
(2)在直角坐標系xoy中,直線l的參數方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標方程;(Ⅱ)設圓C與直線l交于點A、B,若點P的坐標為(3,
5
)
,
求|PA|+|PB|.
(3)已知函數f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實數x恒成立,求實數m的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视