(Ⅰ)證明:連結OF.CE.A′O.如圖9―73∵AE=BF ∴EB=CF OC=CB ∠OCF=∠CBE∴△OCF≌△CEB ∴∠ECB=∠FOC.∴OF⊥CE又∵CC′⊥平面AC CE⊥OF ∴C′E⊥OF又∵EB⊥平面BC′.C′B⊥B′C ∴C′E⊥B′C又∵A′O∥B′C ∴C′E⊥A′O又∵A′O∩OF=O C′E⊥A′O C′E⊥OF 查看更多

 

題目列表(包括答案和解析)

(幾何證明選講選做題)已知:如圖,在△ABC中,∠ABC=90°,O是AB上一點,以O為圓心,OB為半徑的圓與AB交于點E,與AC切于點D,連結DB、DE、OC。若AD=2,AE=1,則CD的長為    。

查看答案和解析>>

在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖1).將△AEF、△CFP分別沿EF、PF折起到△A1EF和△C1FP的位置,使二面角A1-EF-B和C1-PF-B均成直二面角,連結A1B、A1P、EC1(如圖2)
(1)求證:A1E⊥平面BEP;
(2)設正△ABC的邊長為3,以
EB
,
EF
EA
為正交基底,建立空間直角坐標系.
①求點C1的坐標;
②直線EC1與平面C1PF所成角的大。
③求二面角B-A1P-F的余弦值.
精英家教網

查看答案和解析>>

精英家教網在△ABC中,a,b,c分別為內角A,B,C所對的邊,且滿足
sinB+sinC
sinA
=
2-cosB-cosC
cosA

(1)證明:b+c=2a;
(2)如圖,點O是△ABC外一點,設∠AOB=θ(0<θ<π),OA=2OB=2,當b=c時,求平面四邊形OACB面積的最大值.

查看答案和解析>>

(本題為選做題,請在下列三題中任選一題作答)
A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點D,AD=2,則∠C的大小為
30°
30°

B(《坐標系與參數方程選講》選做題).已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,則點A(2,
4
)到這條直線的距離為
2
2
2
2

C(不等式選講)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

精英家教網在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數a的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视