在Rt△AHC′中.sinAC′H=.∴∠AC′H=arcsin. 查看更多

 

題目列表(包括答案和解析)

在Rt△ABC中,兩直角邊分別為a、b,設h為斜邊上的高,則
1
h2
=
1
a2
+
1
b2
,由此類比:三棱錐S-ABC中的三條側棱SA、SB、SC兩兩垂直,且長度分別為a、b、c,設棱錐底面ABC上的高為h,則
 

查看答案和解析>>

如圖,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分別是AC,AB上的點,且DE∥BC,DE=4,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)過點E作截面EFH∥平面A1CD,分別交CB于F,A1B于H,求截面EFH的面積;
(3)線段BC上是否存在點P,使平面A1DP與平面A1BE成600的角?說明理由.

查看答案和解析>>

精英家教網在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h
2
1
=
1
CA2
+
1
CB2
;類比此性質,如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,底面ABC上的高為h,則得到的正確結論為
 

查看答案和解析>>

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經軸對稱變換后的圖形為A′C′.
①當t>
35
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h
2
1
=
1
|CA|2
+
1
|CB|2
;
類比此性質,如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,
底面ABC上的高為h,則得到的一個正確結論是
1
h2
=
1
|PA|2
+
1
|PB|2
+
1
|PC|2
1
h2
=
1
|PA|2
+
1
|PB|2
+
1
|PC|2

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视