∴聯系①.②.③可得ni<miAin. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

(2013•樂山一模)已知一個空間幾何體的三視圖如圖所示,其中正視圖、側視圖都是由半圓和矩形組成,根據圖中標出的尺寸(單位:cm).可得這個幾何體的體積是(  )

查看答案和解析>>

設函數f(x)=
x
x+1
(x>0)
,觀察:f1(x)=f(x)=
x
x+1
,f2(x)=f(f1(x))=
x
2x+1
f3(x)=f(f2(x))=
x
3x+1
,f4(x)=f(f3(x))=
x
4x+1
,根據以上事實,由歸納推理可得:當n∈N+且n≥2時,fn(x)=f(fn-1(x))=
x
nx+1
x
nx+1

查看答案和解析>>

通過計算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
將以上各式分別相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1)2

類比上述求法:請你求出12+22+32+…+n2的值(要求必須有運算推理過程).

查看答案和解析>>

如圖,設計一個小型正四棱錐形冷水塔,其中頂點P在底面的射影為正方形ABCD的中心O,返水口E為BC的中點,冷水塔的四條鋼梁(側棱)設計長度均為10米.冷水塔的側面選用鋼板,基于安全與冷凝速度的考量,要求鋼梁(側棱)與底面的夾角α落在區間[
π
6
,
π
3
]
內,如何設計可得側面鋼板用料最省且符合施工要求?

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视