題目列表(包括答案和解析)
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設,由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
過拋物線的對稱軸上的定點
,作直線
與拋物線相交于
兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線
上的任一點,試探索三條直線
的斜率之間的關系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數列,下證之
設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
某地區植被被破壞,土地沙化越來越嚴重,最近三年測得沙漠增加值分別為0.2萬公頃、0.4萬公頃和0.76萬公頃,則沙漠增加數y(萬公頃)關于年數x(年)的函數關系較為近似的是( )
A.y=0.2x B.y= (x2+2x)
C.y= D.y=0.2+log16x
求圓心在直線y=-2x上,并且經過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯立解得x=1,y=-2,即圓心(1,-2)
∴r==
,
故所求圓的方程為:+
=2
解:法一:
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==
,
………………………10分
故所求圓的方程為:+
=2
………………………12分
法二:由條件設所求圓的方程為:+
=
, ………………………6分
解得a=1,b=-2, =2
………………………10分
所求圓的方程為:+
=2
………………………12分
其它方法相應給分
已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y軸距離的差都是1
(1) 求曲線C的方程.
(2) 是否存在正數m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
【解析】(1)由題意知曲線C上的點到F(1,0)的距離與到直線x=-1的距離相等.
可確定其軌跡是拋物線,即可求出其方程為y2=4x.
(2)設過點M的直線方程為x=ty+m,然后與拋物線方程聯立,消去x,利用韋達定理表示出,再證明其小于零即可.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com