題目列表(包括答案和解析)
已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數,e=2.718…,且函數y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數a的值;(2)若存在x使不等式>
成立,求實數m的取值范圍;
(3)對于函數y=f(x)和y=g(x)公共定義域內的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.
已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數, e=2.718…,且函數y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數a的值;
(2)若存在x使不等式>
成立,求實數m的取值范圍;
(3)對于函數y=f(x)和y=g(x)公共定義域內的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.
“我們稱使f(x)=0的x為函數y=f(x)的零點.若函數y=f(x)在區間[a,b]上是連續的、單調的函數,且滿足f(a)·f(b)<0,則函數y=f(x)在區間[a,b]上有唯一的零點”.對于函數f(x)=6ln(x+1)-x2+2x-1.
(1)討論函數f(x)在其定義域內的單調性,并求出函數極值;
(2)證明連續函數f(x)在[2,+∞)內只有一個零點.
(本小題滿分10分)選修4-5:不等式選講
設函數f(x)=|x-1|+|x-2|.
(Ⅰ)畫出函數y=f(x)的圖象;
(Ⅱ)若不等式|a+b|-|a-b|≤|a|·f(x)對任意a,b∈R且a≠0恒成立,求實數x的范圍
將函數y=f(x)·sinx的圖象向右平移個單位后,再作關于x軸的對稱變換得到函數y=1-2sin2x的圖象,則f(x)是
( )
A.-2cosx B.2cosx
C.-2sinx D.2sinx
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com