題目列表(包括答案和解析)
(本小題滿分12分)如圖,在平面直角坐標系中,直線:
與
軸交于點
,與
軸交于點
,拋物線
過點
、點
,且與
軸的另一交點為
,其中
>0,又點
是拋物線的對稱軸
上一動點.
(1)求點的坐標,并在圖1中的
上找一點
,使
到點
與點
的距離之和最。
(2)若△周長的最小值為
,求拋物線的解析式及頂點
的坐標;
(3)如圖2,在線段上有一動點
以每秒2個單位的速度從點
向點
移動(
不與端點
、
重合),過點
作
∥
交
軸于點
,設
移動的時間為
秒,試把△
的面積
表示成時間
的函數,當
為何值時,
有最大值,并求出最大值.
(本小題滿分12分)
如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長CO交⊙O于點M,過點M作MN ∥OB交CD于N.
1.⑴求證:MN是⊙O的切線;
2.⑵當0B=6cm,OC=8cm時,求⊙O的半徑及圖中陰影部分的面積.
(本小題滿分12分)
甲、乙、丙三個人準備打羽毛球,他們約定用“拋硬幣”的方式來確定哪兩個人先上場,三人手中各持有一枚質地均勻的硬幣,同時將手中硬幣拋落到水平地面為一個回合.落地后,三枚硬幣中,恰有兩枚正面向上或反面向上的這兩枚硬幣持有人先上場;若三枚硬幣均為正面向上或反面向上,屬于不能確定.
1.(1)請你畫出表示“拋硬幣”一個回合所有可能出現的結果的樹狀圖;
2.(2)求一個回合能確定兩人先上場的概率.
(本小題滿分12分)
如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標為(4,2).
1.⑴ 畫出關于點O成中心對稱的
,并寫出點B1的坐標;
2.⑵ 求出以點B1為頂點,并經過點B的二次函數關系式.
(本小題滿分12分)
如圖,RtΔABC中,∠ACB=90°,AC=4,BA=5,點P是AC上的動點(P不與A、C重合)PQ⊥AB,垂足為Q.設PC=x,PQ= y.
1.⑴求y與x的函數關系式;
2.⑵試確定此RtΔABC內切圓I的半徑,并探求x為何值時,直線PQ與這個內切圓I相切?
3.⑶若0<x<1,試判斷以P為圓心,半徑為y的圓與⊙I能否相內切,若能求出相應的x的值,若不能,請說明理由.
一 選擇題(共20分,每小題2分)
1. B 2 . B 3. C 4 .A 5 C 6 . C 7. C 8. A 9 . B 10. D
.
二,填空題。(共24分,每小題3分)
11 . 12 . 13 .
14 .
15.
16 .
17 .
18 .
.
三、
19解:
當時,原式=
(
)
20(1)如圖
(2)優等人數為
良等人數為
(3)優、良等級的概率分別是
(4)該校數學成績優等、良等人數共占40%、等人數僅占10%,說明該校期末考試成績比較好.(只要合理,均給分)
21.解: (1)∵在Rt△AOB中,∠AOB=900,∠ABO=600,OB=1
∴AB=2,OA=
∴點A坐標
∵二次函數y=ax2+bx+c的圖像經過點A、點B
和點C
∴
解得
∴該二次函數的表達式
(2)對稱軸為;頂點坐標為
.
(3)∵對稱軸為,A
∴點D坐標
∴四邊形ABCD為等腰梯形
22.解:過點D作DE⊥BC交BC延長線于點E,過點E作EF∥AD交AB于點F
在Rt△CDE中,∠CED=90°,∠DCE=30°,CD=10
∴DE=5, CE=
∴BE=
∵太陽光線AD與水平地面成30°角
∴∠FEB=30°
在Rt△BFE中,∠B=90°,∠FEB=30°,BE=
∴BF=BE?tan∠FEB==
∵AF=DE=5
∴AB=AF+BF==
=19.1≈19
答旗桿AB的高度為19米.
23解:⑴
⑵如圖所示
⑶如圖所示
24.解:(1)如圖1,AE=AF. 理由:證明△ABE≌△ADF(ASA)
(2)如圖2, PE=PF.
理由:過點P作PM⊥BC于M,PN⊥DC于N,則PM=PN.由此可證得△PME≌△PNF(ASA),從而證得PE=PF.
(3) PE、PF不具有(2)中的數量關系.
當點P在AC的中點時,PE、PF才具有(2)中的數量關系.
25.解:(1)由已知條件,得
(2)由已知條件,得
解得
∴應從A村運到甲庫50噸,運到乙庫150噸;從B村運到甲庫190噸,運到乙庫110噸,這樣調運就能使總運費最少.
(3)這個同學說的對.
理由:設A村的運費為元,則
,
∴當x=200時,A村的運費最少,
而y=-2x+9680(0≤x≤200)
∵K=-2<0
∴X=200時,y有最小值,兩村的總運費也是最少。
即當x=200時,A村和兩村的總運費都最少。
26.解:(1)如圖,作DE⊥AB于E,CF⊥AB于F,
依題意可知,四邊形CDEF是矩形,AE=BF,
在Rt△ADE中,
∴梯形ABCD的周長為, 面積為
.
(2)∵PQ平分梯形ABCD的周長,
∴
解得
∴當PQ平分梯形ABCD的周長時,
(3)∵PQ平分梯形ABCD的面積
∴①當點P在AD邊上時,
解得
②當點P在DC邊上時,
即
解得
③當點P在CB邊上時,
∵△<0,∴此方程無解.
∴當PQ平分梯形ABCD的面積時,
(4).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com