抓數學思想方法:在本次數學試卷設計中滲透了方程.數形結合.運動變化.分類討論.函數等數學思想方法. 查看更多

 

題目列表(包括答案和解析)

(2012•河南)類比、轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.
原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若
AF
EF
=3,求
CD
CG
的值.

(1)嘗試探究
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數量關系是
AB=3EH
AB=3EH
,CG和EH的數量關系是
CG=2EH
CG=2EH
,
CD
CG
的值是
3
2
3
2

(2)類比延伸
如圖2,在原題的條件下,若
AF
EF
=m(m>0),則
CD
CG
的值是
m
2
m
2
(用含有m的代數式表示),試寫出解答過程.
(3)拓展遷移
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F.若
AB
CD
=a,
BC
BE
=b,(a>0,b>0)
,則
AF
EF
的值是
ab
ab
(用含a、b的代數式表示).

查看答案和解析>>

我國著名數學家華羅庚曾說過:“數缺形時少直觀,形少數時難入微;數形結合百般好,隔離分家萬事休”.數學中,數和形是兩個最主要的研究對象,它們之間有著十分密切的聯系,在一定條件下,數和形之間可以相互轉化,相互滲透.
數形結合的基本思想,就是在研究問題的過程中,注意把數和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數量關系的問題,或者把數量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整數.
對于這個求和問題,如果采用純代數的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數形結合的方法,即用圖形的性質來說明數量關系的事實,那就非常的直觀.現利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數恰為所求式子1+2+3+4+…+n的值.為求式子的值,現把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數為n(n+1)個,因此,組成一個三角形小圓圈的個數為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

(1)仿照上述數形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數.(要求:畫出圖形,精英家教網并利用圖形做必要的推理說明)

查看答案和解析>>

學函數要會“看圖說話”
“數形結合”是初中重要的數學思想方法,在函數一章的學習中,掌握這種思想方法顯得特別重要,在分析和解決函數問題時,要學會由數想形、以形助數,借助函數的圖象研究其數量關系,描述其性質.當你掌握了“看圖說話”的本領后,解決函數問題就會感覺到簡捷、輕快!
如:甲、乙兩人(甲騎自行車,乙騎摩托車)從A城出發到B城旅行,下圖表示甲、乙兩人離開A城的路程與時間之間的函數圖象,根據圖象,你能得到關于甲、乙兩人旅行的哪些信息?

查看答案和解析>>

類比、轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.

原題:如圖1,在中,點E是BC邊上的中點,點F是線段AE上一點,BF的延長線交射線CD于點G,若,求的值。

 

 

(1)嘗試探究

     在圖1中,過點E作交BG于點H,則AB和EH的數量關系是            ,CG和EH的數量關系是            , 的值是         

(2)類比延伸

如圖2,在原題的條件下,若的值是       (用含的代數式表示),試寫出解答過程。

 

 

(3)拓展遷移

     如圖3,梯形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F,若,則的值是             (用含的代數式表示).

 

 

 

查看答案和解析>>

類比、轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.
原題:如圖1,在中,點E是BC邊上的中點,點F是線段AE上一點,BF的延長線交射線CD于點G,若,求的值。

(1)嘗試探究
在圖1中,過點E作交BG于點H,則AB和EH的數量關系是           ,CG和EH的數量關系是           ,的值是         
(2)類比延伸
如圖2,在原題的條件下,若的值是      (用含的代數式表示),試寫出解答過程。

(3)拓展遷移
如圖3,梯形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F,若,則的值是            (用含的代數式表示).

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视