題目列表(包括答案和解析)
(本小題滿分14分)
已知函數。
(1)證明:
(2)若數列的通項公式為
,求數列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設數列滿足:
,設
,
若(2)中的滿足對任意不小于2的正整數
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數
(1)求函數的單調區間;
(2)若當時,不等式
恒成立,求實數
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數,
(1)討論時,
的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數,使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數列的前
項和為
,對任意的正整數
,都有
成立,記
。
(I)求數列的通項公式;
(II)記,設數列
的前
項和為
,求證:對任意正整數
都有
;
(III)設數列的前
項和為
。已知正實數
滿足:對任意正整數
恒成立,求
的最小值。
一.選擇題(每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
D
D
B
D
A
C
C
A
A
二.填空題(每小題4分,共16分)
13. 14.
15.
16.
-
三、解答題:(本大題共6個小題,共74分.解答應寫出文字說明,證明過程或演算步驟).
17、(本小題滿分12分)
解:由得:
(3分)
因為所以
所以
(6分)
由正弦定理得. (8分) 從而由余弦定理及
得:
(12分)
18、(本小題滿分12分)
解:(1)∵這支籃球隊與其他各隊比賽勝場的事件是相互獨立的,
∴首次勝場前已負了兩場的概率P=(1-)×(1-
)×
=
. 4分
(2)設A表示這支籃球隊在6場比賽中恰好勝了3場的事件,則P(A)就是6次獨立重復試驗中恰好發生3次的概率.∴P(A)=P6(3)=C(
)3(1-
)3=
.
8分
(3)設ξ表示這支籃球隊在6場比賽中勝場數,則ξ~B(6,).
∴Dξ=6××(1-
)=
,Eξ=6×
=2.
故這支籃球隊在6場比賽中勝場數的期望是2,方差是.
12分
19、(本小題滿分12分)
解: (4分)
,
( 6分)
當時,
當
時,
,(9分)
當
時,
當時,
(11分)
綜上,
所以,
為等差數列.(12分)
20.(本題?分12分)
解 (1)如圖2,將已知條件實現在長方體中,則直線與平面
所成的角為
,ks5u直線
與平面
所成角的為
.在直角
中,有
,故
=
;在直角
中,有
,
故=
. 6分
(2)如圖2,作有
設二面角的平面角為
,則
得:.
12分
21、(本小題滿分12分)
解:因為線段的兩端點在拋物線
上,故可設
,設線段
的中點
,則
7分
又,
所以:
11分
所以,線段的中點
的軌跡方程為
. 12分
22、(本小題滿分14分)
(1)解:f′(x)=3x2-6ax+b,
過P1(x1,y1)的切線方程是y-y1=f′(x1)(x-x1)(x1≠0).
又原點在直線上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),
解得x1=. 4分
(2)解:過Pn(xn,yn)的切線方程是y-yn=f′(xn)(x-xn).
又Pn+1 (xn+1,yn+1)在直線上,
所以(xn+1-xn)2(xn+1+2xn-
解得xn+1+2xn-
(3)證明:由(2)得xn+1-a=-2(xn-a),
所以數列{xn-a}是首項為x1-a=,公比為-2的等比數列.
∴xn=a+?(-2)n-1,
即xn=[1-(-2)n-2]a.
當n為正偶數時,xn<a;當n為正奇數時, xn>a. 14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com