題目列表(包括答案和解析)
((本小題共13分)
若數列滿足
,數列
為
數列,記
=
.
(Ⅰ)寫出一個滿足,且
〉0的
數列
;
(Ⅱ)若,n=2000,證明:E數列
是遞增數列的充要條件是
=2011;
(Ⅲ)對任意給定的整數n(n≥2),是否存在首項為0的E數列,使得
=0?如果存在,寫出一個滿足條件的E數列
;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數列A5。
(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數列A5)
(Ⅱ)必要性:因為E數列A5是遞增數列,所以.所以A5是首項為12,公差為1的等差數列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數列.綜上,結論得證。
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com