22.(本小題滿分12分.其中小問3分. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知數列的前項和為,且

;(1)求數列的通項公式

(2)設數列滿足:,且,求證:(3)若(2)問中數列 滿足 ,

求證: (其中為自然對數的底數)。

查看答案和解析>>

(本小題滿分12分)

為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

 

5

 

女生

10

 

[來源:學|科|網]

合計

 

 

50[]

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為

(1)請將上面的列聯表補充完整

(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;

(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,

還喜歡打乒乓球,還喜歡踢足球,現在從喜歡打羽毛球、喜歡打乒乓球、

喜歡踢足球的8位女生中各選出1名進行其他方面的調查,求不全被選

中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

(本小題滿分12分)某校高一(2)班共有60名同學參加期末考試,現將其數學學科成績(均為整數)分成六個分數段,畫出如下圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:

     (1)求70~80分數段的學生人數;

     (2)估計這次考試中該學科的優分率(80分及以上為優分)

     (3)現根據本次考試分數分成下列六段(從低分段到高分段依次為第一組、第二組、…、第六組)為提高本班數學整體成績,決定組與組之間進行幫扶學習.若選出的兩組分數之差大于30分(以分數段為依據,不以具體學生分數為依據),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.[來源:學#科#網]

 

 

查看答案和解析>>

(本小題滿分12分)

道路交通安全法中將飲酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當20≤Q<80時,為酒后駕車;當Q≥80時,為醉酒駕車. 某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了200輛機動車駕駛員的血酒含量,其中查處酒后駕車的有6人,查處醉酒駕車的有2人,依據上述材料回答下列問題:

(1)分別寫出違法駕車發生的頻率和醉酒駕車占違法駕車總數的百分數;

(2)從違法駕車的8人中抽取2人,求取到醉酒駕車人數的分布列和期望,并指出所求期望的實際意義;

(3)飲酒后違法駕駛機動車極易發生交通事故,假設酒后駕車和醉酒駕車發生交通事故的概率分別是0.1和0.25,且每位駕駛員是否發生交通事故是相互獨立的。依此計算被查處的8名駕駛員中至少有一人發生交通事故的概率。(精確到0.01)并針對你的計算結果對駕駛員發出一句話的倡議.

 

查看答案和解析>>

(本小題滿分12分)

2011年4月28日,世界園藝博覽會已在西安正式開園,正式開園前,主辦方安排了4次試運行,為了解前期準備情況和試運行中出現的問題,以做改進,組委會組織了一次座談會,共邀請20名代表參加,他們分別是游客15人,志愿者5人。

(I)從這20名代表中隨機選出3名談建議,求至少有1人是志愿者的概率;

(II)若隨機選出2名代表發言,表示其游客人數,求的分布列和數學期望。

查看答案和解析>>

一、DDBCD  CABCA

二、11.1;       12.;     13.           14.;    15.;

16.

三.解答題(本大題共6小題,共76分)

17.解:(1)法一:由題可得;

法二:由題,

,從而

法三:由題,解得

,從而。

(2),令,

,

單調遞減,

,

從而的值域為。

18.解:(1)的可能取值為0,1,2,3,4,

,

,。

因此隨機變量的分布列為下表所示;

0

1

2

3

4

(2)由⑴得:,

19.法一:(1)連接,設,則。

因為,所以,故,從而,

又因為,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為

(2)連接,因為此時分別為的中點,

,所以均為直角三角形,

從而,所以即為直線與平面所成的角。

因為,所以即為所求;

(3)因,又,所以

,故三棱錐的表面積為

因為三棱錐的體積,

所以

法二:(1)因,故。

,則

所以,

當且僅當取等號。此時邊的中點。

故當的中點時,的長度最小,其值為

(2)因,又,所以。

點到平面的距離為,

,故,解得

,故

(3)同“法一”。

法三:(1)如圖,以為原點建立空間直角坐標系,設,則,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為;

(2)設為面的法向量,因,

。取,得。

又因,故

因此,從而

所以;

(3)由題意可設為三棱錐的內切球球心,

,可得。

與(2)同法可得平面的一個法向量

,故

解得。顯然,故。

20.解:(1)當時,。令,

故當單調遞增;

單調遞減。

所以函數的單調遞增區間為,

單調遞減區間為

(2)法一:因,故

,

要使對滿足的一切成立,則

解得;

法二:,故。

可解得。

因為單調遞減,因此單調遞增,故。設,

,因為,

所以,從而單調遞減,

。因此,即

(3)因為,所以

對一切恒成立。

,令,

。因為,所以,

單調遞增,有

因此,從而

所以。

21.解:(1)設,則由題,

,故。

又根據可得

,代入可得,

解得(舍負)。故的方程為;

(2)法一:設,代入,

,

從而

因此

法二:顯然點是拋物線的焦點,點是其準線上一點。

的中點,過分別作的垂線,垂足分別為

。

因此以為直徑的圓與準線切(于點)。

重合,則。否則點外,因此。

綜上知

22.證明:(1)因,故

顯然,因此數列是以為首項,以2為公比的等比數列;

(2)由⑴知,解得

(3)因為

所以。

(當且僅當時取等號),

。

綜上可得。(亦可用數學歸納法)

 


同步練習冊答案
久久精品免费一区二区视