遞推數列的模型, 查看更多

 

題目列表(包括答案和解析)

(2012•石景山區一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

定義:若數列{An}滿足An+1=
A
2
n
則稱數列{An}為“平方遞推數列”,已知數列{an}中,a1=2,點{an,an+1}在函數f(x)=2x2+2x的圖象上,其中n的正整數.
(1)證明數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列;
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式;
(3)記bn=log2an+1Tn,求數列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

若數列{an}的項構成的新數列{an+1-Kan}是公比為l的等比數列,則相應的數列{an+1-1an}是公比為k的等比數列,運用此性質,可以較為簡潔的求出一類遞推數列的通項公式,并簡稱此法為雙等比數列法.已知數列{an}中,a1=
3
5
,a2=
31
100
,且an+1=
1
10
an+
1
2n+1

(1)試利用雙等比數列法求數列{an}的通項公式;
(2)求數列{an}的前n項和Sn

查看答案和解析>>

定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(Ⅰ)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(Ⅱ)設(Ⅰ)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項公式及Tn關于n的表達式.
(Ⅲ)記bn=log(1+2an)Tn,求數列{bn}的前n項之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

(2012•石景山區一模)若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(Ⅰ)證明數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列;
(Ⅱ)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式;
(Ⅲ)記bn=log2an+1Tn,求數列{bn}的前n項和Sn

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视