26.(1)解:由得點坐標為 由得點坐標為 ∴··················································································· 由解得∴點的坐標為···································· ∴··························································· (2)解:∵點在上且 ∴點坐標為······················································································ 又∵點在上且 ∴點坐標為······················································································ ∴··········································································· (3)解法一:當時.如圖1.矩形與重疊部分為五邊形(時.為四邊形).過作于.則 ∴即∴ ∴ 即··································································· 29. 問題解決 如圖(1).將正方形紙片折疊.使點落在邊上一點(不與點.重合).壓平后得到折痕.當時.求的值. 類比歸納 在圖(1)中.若則的值等于 ,若則的值等于 ,若(為整數).則的值等于 .(用含的式子表示) 聯系拓廣 如圖(2).將矩形紙片折疊.使點落在邊上一點(不與點重合).壓平后得到折痕設則的值等于 .(用含的式子表示) 查看更多

 

題目列表(包括答案和解析)

解:(1)OA=1,OC=2

A點坐標為(0,1),C點坐標為(2,0)

設直線AC的解析式為y=kx+b

解得

直線AC的解析式為··················· 2分

(2)

(正確一個得2分)························· 8分

(3)如圖,設

點作F

由折疊知

或2··········· 10分

查看答案和解析>>

在直角坐標系xOy中,設點A(0,t),點Q(t,b)(t,b均為非零常數).平移二次精英家教網函數y=-tx2的圖象,得到的拋物線F滿足兩個條件:①頂點為Q;②與x軸相交于B,C兩點(|OB|<|OC|).連接AB.
(1)是否存在這樣的拋物線F,使得|OA|2=|OB|•|OC|?請你作出判斷,并說明理由;
(2)如果AQ∥BC,且tan∠ABO=
32
,求拋物線F對應的二次函數的解析式.

查看答案和解析>>

在直角坐標系xOy中,設點A(0,t),點Q(t,b)(t,b均為非零常數).平移二次函數y=-tx2的圖象,得到的拋物線F滿足兩個條件:①頂點為Q;②與x軸相交于B,C兩點(|OB|<|OC|).連接AB.
(1)是否存在這樣的拋物線F,使得|OA|2=|OB|•|OC|?請你作出判斷,并說明理由;
(2)如果AQ∥BC,且tan∠ABO=數學公式,求拋物線F對應的二次函數的解析式.

查看答案和解析>>

在直角坐標系xOy中,設點A(0,t),點Q(t,b)(t,b均為非零常數),平移二次函數y=-tx2的圖象,得到的拋物線F滿足兩個條件:①頂點為Q;②與x軸相交于B,C兩點(|OB|<|OC|),連接AB。

(1)是否存在這樣的拋物線F,使得|OA|2=|OB|·|OC|?請你作出判斷,并說明理由;
(2)如果AQ∥BC,且tan∠ABO=,求拋物線F對應的二次函數的解析式。

查看答案和解析>>

在直角坐標系xOy中,設點A(0,t),點Q(t,b)。平移二次函數的圖象,得到的拋物線F滿足兩個條件:①頂點為Q;②與x軸相交于B,C兩點(OB<OC),連結A,B。

(1)是否存在這樣的拋物線F,使得?請你做出判斷,并說明理由;

(2)如果AQ∥BC,且tan∠ABO=,求拋物線F對應的二次函數的解析式。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视