若ΔABC的三邊長分別為m2-n2.m2+n2.2mn.求證:ΔABC是直角三角形 查看更多

 

題目列表(包括答案和解析)

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上
 
;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
5
a
2
2
a
、
17
a
(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創新:
(3)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
、2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
精英家教網

查看答案和解析>>

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.我們把上述求△ABC面積的方法叫做構圖法.
(1)若△ABC三邊的長分別為
5
a,2
2
a,
17
a
(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
探索創新:
(3)已知a、b都是正數,a+b=3,求當a、b為何值時
a2+4
+
b2+25
有最小值,并求這個最小值.
(4)已知a,b,c,d都是正數,且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

閱讀下面材料:
小明同學遇到這樣一個問題:定義:如果一個圖形繞著某定點旋轉一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉對稱圖形.如等邊三角形就是一個旋轉角為120°的旋轉對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉對稱圖形.小明利用旋轉解決了這個問題(如圖2所示).圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉對稱圖形.請你參考小明同學解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P 1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫-個和△ABC面積相等的新的旋轉對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的邊長為6,則圖3中△ABM1的面積為______

查看答案和解析>>

(2013•宜興市二模)閱讀下面材料:
小明同學遇到這樣一個問題:定義:如果一個圖形繞著某定點旋轉一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉對稱圖形.如等邊三角形就是一個旋轉角為120°的旋轉對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉對稱圖形.小明利用旋轉解決了這個問題(如圖2所示).圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉對稱圖形.請你參考小明同學解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P 1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫-個和△ABC面積相等的新的旋轉對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的邊長為6,則圖3中△ABM1的面積為
3
3
3
3

(3)若△ABC的面積為a,則圖3中△FGH的面積為
a
7
a
7

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视