已知函數.則當時其導函數的值為 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=ax3+bx2+cx,其導函數y=f′(x)的圖象經過點(1,0),(2,0),如圖所示,則下列說法中正確結論的序號為   
①當x=時函數取得極小值;
②f(x)有兩個極值點;
③當x=2時函數取得極小值;
④當x=1時函數取得極大值.

查看答案和解析>>

已知定義在R上的偶函數g(x)滿足:當x≠0時,xg′(x)<0(其中g′(x)為函數g(x)的導函數);定義在R上的奇函數f(x)滿足:f(x+2)=-f(x),在區間[0,1]上為單調遞增函數,且函數y=f(x)在x=-5處的切線方程為y=-6.若關于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是( 。

查看答案和解析>>

已知定義在R上的奇函數f(x),設其導函數為f′(x),當x∈(-∞,0)時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數x的取值范圍是                                                                      (  )

A.(-1,2)                         B.(-1,)

C.(,2)                         D.(-2,1)

查看答案和解析>>

已知定義在R上的偶函數g(x)滿足:當x≠0時,xg′(x)<0(其中g′(x)為函數g(x)的導函數);定義在R上的奇函數f(x)滿足:f(x+2)=-f(x),在區間[0,1]上為單調遞增函數,且函數y=f(x)在x=-5處的切線方程為y=-6.若關于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是( 。
A.-2≤a≤3B.a≤-1或a≥2C.-1≤a≤2D.a≤-2或a≥3

查看答案和解析>>

已知定義在R上的偶函數g(x)滿足:當x≠0時,xg′(x)<0(其中g′(x)為函數g(x)的導函數);定義在R上的奇函數f(x)滿足:f(x+2)=-f(x),在區間[0,1]上為單調遞增函數,且函數y=f(x)在x=-5處的切線方程為y=-6.若關于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是( )
A.-2≤a≤3
B.a≤-1或a≥2
C.-1≤a≤2
D.a≤-2或a≥3

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视