2.解:⑴當.即x=a或時z為實數, ⑵當.即且時z為虛數, ⑶當=0且.即x=1時z為純虛數 ⑷當.即當0<a<1時.0<x<a或x>,或a>1時.x>a或0<x<時z在復平面上對應的點在實軸上方, ⑸當+=1即x=1時.|z|=1. 查看更多

 

題目列表(包括答案和解析)

已知二次函數的二次項系數為,且不等式的解集為,

(1)若方程有兩個相等的根,求的解析式;

(2)若的最大值為正數,求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設出二次函數的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當f(x)的最大值為正數時,實數a的取值范圍是

 

查看答案和解析>>

定義在R上的函數f(x)即是偶函數又是周期函數,若f(x)的最小正周期是π,且當x∈[0,
π
2
]
時,f(x)=sinx,則f(x)=
1
2
的解為( 。

查看答案和解析>>

函數是定義在上的奇函數,且。

(1)求實數a,b,并確定函數的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且。

解得

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

(3)中,由2知,單調減區間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數,。

,………………2分

,又,,

(2)任取,且,

,………………6分

,

,,,

在(-1,1)上是增函數!8分

(3)單調減區間為…………………………………………10分

當,x=-1時,,當x=1時,。

 

查看答案和解析>>

已知函數f(x)=,為常數。

(I)當=1時,求f(x)的單調區間;

(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。

【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則在區間[1,2]上恒成立,即即,或在區間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數,在(1,上是減函數!6分

(2)。若函數f(x)在區間[1,2]上為單調函數,

在區間[1,2]上恒成立。∴,或在區間[1,2]上恒成立。即,或在區間[1,2]上恒成立。

又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

定義在R上的函數f(x)即是偶函數又是周期函數,若f(x)的最小正周期是π,且當x∈[0,
π
2
]
時,f(x)=sinx,則f(x)=
1
2
的解為( 。
A.
π
6
B.x=2kπ+
π
6
或x=2kπ+
6
(k∈Z)
C.
π
6
6
D.x=kπ+
π
6
或x=kπ+
6
(k∈Z)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视