3.對數函數 的圖像和性質: a>1 0<a<1 圖 象 性 質 定義域: 值域:R 過點(1.0).即當時. 時 時 時 時 在上是增函數 在上是減函數 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.

(1)求n,m的關系式并求f(x)的單調減區間;

(2)證明:對任意實數0<x1<x2<1, 關于x的方程:

在(x1,x2)恒有實數解

(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數f(x)是在閉區間[a,b]上連續不斷的函數,且在區間(a,b)內導數都存在,則在(a,b)內至少存在一點x0,使得.如我們所學過的指、對數函數,正、余弦函數等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:

當0<a<b時,(可不用證明函數的連續性和可導性)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视