從數學本身發展需要引入概念 從數學內在需要引入概念也是引入數學概念的常用方法之一, 這樣的例子隨處可見.例如, 整個數學體系的建立過程就體現了這一點: 在小學里學習的“數 的基礎上, 為解決“數 的減法中出現的問題, 必須引入負數概念.隨著學習的深入,單純的有理數已不能滿足需要, 必須引入無理數.在實數范圍內, 方程顯然沒有解, 為了使它有解, 就引入了新數i,它滿足i2=-1.并且和實數一起可以按照通常的四則運算法則進行計算, 于是引入了復數的概念. 查看更多

 

題目列表(包括答案和解析)

對于任意實數x,符號[x]表示不超過x的最大整數,如[4.3]=4、[-2.3]=-3、[4]=4,函數f(x)=[x]叫做“取整函數”,也叫做高斯(Gauss)函數.這個函數在數學本身和生產實踐中都有廣泛的應用.
從函數f(x)=[x]的定義可以得到下列性質:x-1<[x]≤x<[x+1];與函數f(x)=[x]有關的另一個函數是g(x)={x},它的定義是{x}=x-[x],函數g(x)={x}叫做“取零函數”,這也是一個常用函數.
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對于任意實數x,符號[x]表示不超過x的最大整數,如[4.3]=4、[-2.3]=-3、[4]=4,函數f(x)=[x]叫做“取整函數”,也叫做高斯(Gauss)函數.這個函數在數學本身和生產實踐中都有廣泛的應用.
從函數f(x)=[x]的定義可以得到下列性質:x-1<[x]≤x<[x+1];與函數f(x)=[x]有關的另一個函數是g(x)={x},它的定義是{x}=x-[x],函數g(x)={x}叫做“取零函數”,這也是一個常用函數.
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對于任意實數x,符號[x]表示不超過x的最大整數,如[4.3]=4、[-2.3]=-3、[4]=4,函數f(x)=[x]叫做“取整函數”,也叫做高斯(Gauss)函數.這個函數在數學本身和生產實踐中都有廣泛的應用.
從函數f(x)=[x]的定義可以得到下列性質:x-1<[x]≤x<[x+1];與函數f(x)=[x]有關的另一個函數是g(x)={x},它的定義是{x}=x-[x],函數g(x)={x}叫做“取零函數”,這也是一個常用函數.
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對于任意實數x,符號[x]表示不超過x的最大整數,如[4.3]=4、[-2.3]=-3、[4]=4,函數f(x)=[x]叫做“取整函數”,也叫做高斯(Gauss)函數.這個函數在數學本身和生產實踐中都有廣泛的應用.
從函數f(x)=[x]的定義可以得到下列性質:x-1<[x]≤x<[x+1];與函數f(x)=[x]有關的另一個函數是g(x)={x},它的定義是{x}=x-[x],函數g(x)={x}叫做“取零函數”,這也是一個常用函數.
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

用數學歸納法證明,從,左邊需要增乘的代數式為_____.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视