(Ⅰ)若在上是增函數,求實數的取值范圍, 查看更多

 

題目列表(包括答案和解析)

函數f(x)=x3+ax2+x+2(x∈R)
(1)當a=-1時,求函數的極值
(2)若f(x)在x∈(-∞,∞)上是增函數,求實數a的取值范圍.
(3)(理科做,文科不用做)
若a=3時,f(x)=x3+3x2+x+2的導函數f(x)是二次函數,f(x)的圖象關于軸對稱.你認為三次函數f(x)=x3+3x2+x+2的圖象是否具有某種對稱性,并證明你的結論.

查看答案和解析>>

函數.
(1)若在其定義域內是增函數,求b的取值范圍;
(2)若,若函數在 [1,3]上恰有兩個不同零點,求實數的取值范圍.

查看答案和解析>>

函數.
(1)若,函數在區間上是單調遞增函數,求實數的取值范圍;
(2)設,若對任意恒成立,求的取值范圍.

查看答案和解析>>

定義:若上為增函數,則稱為“k次比增函數”,其中. 已知其中e為自然對數的底數.
(1)若是“1次比增函數”,求實數a的取值范圍;
(2)當時,求函數上的最小值;
(3)求證:.

查看答案和解析>>

函數.
(1)若,函數在區間上是單調遞增函數,求實數的取值范圍;
(2)設,若對任意恒成立,求的取值范圍.

查看答案和解析>>

一.選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

B

C

A

C

B

A

二.填空題

11.      12. ②     13.       14. 120     15.

三.解答題

16.解:(Ⅰ).  …………………………………3分

,得. ………………………………5分

(Ⅱ)由(Ⅰ)得.  ………………8分

,得.

,即時,函數 有最大值.  ……………………12分

17.解:設此工人一個季度里所得獎金為,則是一個離散型隨機變量.由于該工人每月完成任務與否是等可能的,所以他每月完成任務的概率等于.   …………………2分

所以,  ,,

,.    …………8分

于是.

所以此工人在一個季度里所得獎金的期望為153. 75元.     ……………………12分

18.解:(Ⅰ)取BC的中點H,連結PH, 連結AH交BD于E.

.    ……………………………2分

又面,.

  ,.

,.

,即.        ………………………………………………4分

因為AH為PA在平面上的射影,.   ……………………………6分

(Ⅱ)連結PE,則由(Ⅰ)知.

為所求二面角的平面角.       ……………………………………………8分

中,由,求得.

.

即所求二面角的正切值為.     …………………………………………………12分

另解:(Ⅰ)建系設點正確2分,求出兩個法向量2分,判斷正確2分;

(Ⅱ)求出兩個法向量3分,求出余弦值2分,求出正切值1分.

19. 解:(Ⅰ)設,則

,.

即點C的軌跡方程為.    …………………………………………………3分

(Ⅱ)由題意.

. ……………5分

.

,

.       ……………………………8分

(Ⅲ)..

.

∴雙曲線實軸長的取值范圍是.   ………………………………………………12分

20.解: (Ⅰ)由已知得的定義域為,.   ………………2分

由題意得對一切恒成立,

      ……………………………………………5分

時,,

.故.      …………………………………………7分

(Ⅱ)假設存在正實數,使得成立.

.  …………………9分

,得,.由于,故應舍去.

時,    ………………………………………11分

,解得.   …………………………13分

另解: 假設存在正實數,使得成立.

,則.    ………………………9分

,解得.

因為,上單調遞增,在上單調遞減.

.    … ……………………………………11分

,解得.   …………………………13分

21.解:(Ⅰ)由已知,得.  

則數列是公比為2的等比數列.    ……………………………………………2分

.   ……………………………………………4分

(Ⅱ).   …………………6分

恒成立,則

解得

故存在常數A,B,C,滿足條件.       …………………………………………9分

   (Ⅲ)由(Ⅱ)知:

.    …………………14分

=

 

 


同步練習冊答案
久久精品免费一区二区视