14.解:(1)設所求函數關系式為y=kx+b.由圖象可知過兩點.得.∴y=-x+110.(2)當y=10時.-x+110=10.x=100.機器運行100分鐘時.第一個加過程停止.(3)第一加工過程停止后再加滿油只需9分鐘.加工完這批工件.機器耗油166升. 查看更多

 

題目列表(包括答案和解析)

將直線y=2x-3向右平移3個單位,再向上平移1個單位,求平移后的直線的關系式.
在直線y=2x-3上任取兩點A(1,-1),B(0,-3).
由題意知:
點A向右平移3個單位得A′(4,-1);再向上平移1個單位得A″(4,0)
點B向右平移3個單位得B′(3,-3);再向上平移1個單位得B″(3,-2)
設平移后的直線的關系式為y=kx+b.
則點A″(4,0),B″(3,-2)在該直線上,
可解得k=2,b=-8.
所以平移后的直線的關系式為y=2x-8.
根據以上信息解答下面問題:
將二次函數y=-x2+2x+3的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的關系式.(平移拋物線形狀不變)

查看答案和解析>>

將直線y=2x-3向右平移3個單位,再向上平移1個單位,求平移后的直線的關系式.
解:在直線y=2x-3上任取兩點A(1,-1),B(0,-3).
由題意知:
點A向右平移3個單位得A′(4,-1);再向上平移1個單位得A″(4,0)
點B向右平移3個單位得B′(3,-3);再向上平移1個單位得B″(3,-2)
設平移后的直線的關系式為y=kx+b.
則點A″(4,0),B″(3,-2)在該直線上,
可解得k=2,b=-8.
所以平移后的直線的關系式為y=2x-8.
根據以上信息解答下面問題:
將二次函數y=-x2+2x+3的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的關系式.(平移拋物線形狀不變)

查看答案和解析>>

將直線y=2x-3向右平移3個單位,再向上平移1個單位,求平移后的直線的關系式.
解:在直線y=2x-3上任取兩點A(1,-1),B(0,-3).
由題意知:
點A向右平移3個單位得A′(4,-1);再向上平移1個單位得A″(4,0)
點B向右平移3個單位得B′(3,-3);再向上平移1個單位得B″(3,-2)
設平移后的直線的關系式為y=kx+b.
則點A″(4,0),B″(3,-2)在該直線上,
可解得k=2,b=-8.
所以平移后的直線的關系式為y=2x-8.
根據以上信息解答下面問題:
將二次函數y=-x2+2x+3的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的關系式.(平移拋物線形狀不變)

查看答案和解析>>

精英家教網閱讀理解
九年級一班數學學習興趣小組在解決下列問題中,發現該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數”解決問題的方法,然后再應用此方法解決后續問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,FD=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數關系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

閱讀理解
九年級一班數學學習興趣小組在解決下列問題中,發現該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數”解決問題的方法,然后再應用此方法解決后續問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,FD=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數關系式為y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视