
(2011•南匯區二模)已知動直線y=kx交圓(x-2)
2+y
2=4于坐標原點O和點A,交直線x=4于點B,若動點M滿足
=,動點M的軌跡C的方程為F(x,y)=0.
(1)試用k表示點A、點B的坐標;
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質,請你選擇其中的三個方面進行研究,并說明理由(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分).
①對稱性;(2分)
②頂點坐標(定義:曲線與其對稱軸的交點稱為該曲線的頂點);(2分)
③圖形范圍;(2分)
④漸近線;(3分)
⑤對方程F(x,y)=0,當y≥0時,函數y=f(x)的單調性.(3分)