⑸ 甲至少射擊n次.則 查看更多

 

題目列表(包括答案和解析)

(2013•閔行區二模)用二分法研究方程x3+3x-1=0的近似解x=x0,借助計算器經過若干次運算得下表:
運算次數 1 4 5 6
解的范圍 (0,0.5) (0.3125,0.375) (0.3125,0.34375) (0.3125,0.328125)
若精確到0.1,至少運算n次,則n+x0的值為
5.3
5.3

查看答案和解析>>

用二分法研究方程x3+3x-1=0的近似解x=x0,借助計算器經過若干次運算得下表:
運算次數1456
解的范圍(0,0.5)(0.3125,0.375)(0.3125,0.34375)(0.3125,0.328125)
若精確到0.1,至少運算n次,則n+x0的值為________.

查看答案和解析>>

(2012•廣東模擬)甲、乙兩人各射擊一次,擊中目標的概率分別是
2
3
3
4
假設兩人射擊是否擊中目標,相互之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響.
(1)求甲射擊3次,至少1次未擊中目標的概率;
(2)假設某人連續2次未擊中目標,則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?
(3)設甲連續射擊3次,用ξ表示甲擊中目標時射擊的次數,求ξ的數學期望Eξ.(結果可以用分數表示)

查看答案和解析>>

(本小題滿分12分)

甲、乙兩人各射擊一次,擊中目標的概率分別是假設兩人射擊是否擊中目標,相互

之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響

(1)甲射擊3次,至少1次未擊中目標的概率;

(2)假設某人連續2次未擊中目標,則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?

⑶設甲連續射擊3次,用表示甲擊中目標時射擊的次數,求的數學期望.(結果可以用分數表示)

 

 

 

 

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標的概率分別是
2
3
3
4
假設兩人射擊是否擊中目標,相互之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響.
(1)求甲射擊3次,至少1次未擊中目標的概率;
(2)假設某人連續2次未擊中目標,則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?
(3)設甲連續射擊3次,用ξ表示甲擊中目標時射擊的次數,求ξ的數學期望Eξ.(結果可以用分數表示)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视