題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
由下列不等式:,
,
,
,
,你能得到一個怎樣的一般不等式?并加以證明。
【解析】本試題主要考查了合情推理的數學思想,關鍵是觀察到表達式的特點,以及運用數學歸納法證明不等式的重要的數學思想。
由下列不等式:,
你能得到一個怎樣的一般不等式?并加以證明.
【解析】根據觀察得出一般不等式,然后用數學歸納法證明,注意放縮法的應用.
|
|
1.解:依題設有:
………………………………………4分
令,則
…………………………………………5分
…………………………………………7分
………………………………10分
2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1)
,
,由
得
.
所以.
即為圓
的直角坐標方程. ……………………………………3分
同理為圓
的直角坐標方程. ……………………………………6分
(2)由
相減得過交點的直線的直角坐標方程為. …………………………10分
3.(必做題)(本小題滿分10分)
解:(1)記“恰好選到1個曾經參加過數學研究性學習活動的同學”為事件的, 則其概率為
…………………………………………4分
答:恰好選到1個曾經參加過數學研究性學習活動的同學的概率為
(2)隨機變量
……………………5分
…………………………6分
………………………………7分
∴隨機變量的分布列為
2
3
4
P
∴
…………………………10分
4.(必做題)(本小題滿分10分)
(1),
,
,
,
……………………………………3分
(2)平面BDD1的一個法向量為
設平面BFC1的法向量為
∴
取得平面BFC1的一個法向量
∴所求的余弦值為
……6分
(3)設(
)
,由
得
即,
當
時,
當時,∴
……………………………………10分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com