.“蛋圓 切線的解析式為:y=kx-3 ???????????????????????????????? 9分 查看更多

 

題目列表(包括答案和解析)

如圖,長方形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y)軸上,連結OB,將紙片OABC沿OB折疊,使點A落在點A′處,A′B與y軸交于點F,且知OA=1,AB=2.
(1)分別求出OF的長度和點A′坐標;
(2)設過點B的雙曲線為y=
kx
(x>0),則k=
2
2
;
(3)如果D為反比例函數在第一象限圖象上的點,且D點的橫坐標為2,在x軸上求一點P,使PB+PD最。

查看答案和解析>>

(2012•朝陽二模)如圖,拋物線y=
12
x2+mx+n過原點O,與x軸交于A,點D(4,2)在該拋物線上,過點D作CD∥x軸,交拋物線于點C,交y軸于點B,連接CO、AD.
(1)求C點的坐標及拋物線的解析式;
(2)將△BCO繞點O按順時針旋轉90°后 再沿x軸對折得到△OEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;
(3)設過點E的直線交OA于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形AOCD的面積為1:3兩部分?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

(2012•南平)在平面直角坐標系中,矩形OABC如圖所示放置,點A在x軸上,點B的坐標為(m,1)(m>0),將此矩形繞O點逆時針旋轉90°,得到矩形OA′B′C′.
(1)寫出點A、A′、C′的坐標;
(2)設過點A、A′、C′的拋物線解析式為y=ax2+bx+c,求此拋物線的解析式;(a、b、c可用含m的式子表示)
(3)試探究:當m的值改變時,點B關于點O的對稱點D是否可能落在(2)中的拋物線上?若能,求出此時m的值.

查看答案和解析>>

已知拋物線y=ax2+bx+c經過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的解析式和對稱軸;
(2)設點P是直線l上的一個動點,當△PAC是以AC為斜邊的Rt△時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由;
(4)設過點A的直線與拋物線在第一象限的交點為N,當△ACN的面積為
158
時,求直線AN的解析式.

查看答案和解析>>

已知:如圖,在直角坐標系中,以點M(1,0)為圓心、直徑AC為2
2
的圓與y軸交于A、D兩點.
(1)求點A的坐標;
(2)設過點A的直線y=x+b與x軸交于點B.探究:直線AB是否⊙M的切線并對你的結論加以證明;
(3)在(2)的前提下,連接BC,記△ABC的外接圓面積為S1、⊙M面積為S2,若
S1
S2
=
h
4
,拋物線y=ax2+bx+c精英家教網經過B、M兩點,且它的頂點到x軸的距離為h.求這條拋物線的解析式.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视