以點為圓心.為半徑的與直線相切.?????? 查看更多

 

題目列表(包括答案和解析)

以原點為圓心,1cm為半徑的圓分別交x、y軸的正半軸于A、B兩點,點P的坐標為(2,0).
(1)如圖1,動點Q從點B處出發,沿圓周按順時針方向勻速運動一周,設經過的時間為t秒,當t=1時,直線PQ恰好與⊙O第一次相切,連接OQ.求此時點Q的運動速度(結果保留);
(2)若點Q按照(1)中的方向和速度繼續運動,
①當t為何值時,以O、P、Q為頂點的三角形是直角三角形;
②在①的條件下,如果直線PQ與⊙O相交,請求出直線PQ被⊙O所截的弦長.

查看答案和解析>>

直線l的解析式為y=
3
4
x+8,與x軸、y軸分別交于A,B兩點,P是x軸上精英家教網一點,以P為圓心的圓與直線l相切于B點.
(1)求點P的坐標及⊙P的半徑R;
(2)若⊙P以每秒
10
3
個單位沿x軸向左運動,同時⊙P的半徑以每秒
3
2
個單位變小,設⊙P的運動時間為t秒,且⊙P始終與直線l有交點,試求t的取值范圍.

查看答案和解析>>

直線l的解析式y=
3
4
x
+8,與x軸、y軸分別交于A、B兩點,P是x軸上一點,以P為圓心的圓與直線l相切于B點.
(1)求點P的坐標及⊙P的半徑R;
(2)若⊙P以每秒
10
3
個單位沿x軸向左運動,同時⊙P的半徑以每秒
3
2
個單位變小,設⊙P的運動時間是t秒,且⊙P始終與直線l有交點,試求t的取值范圍;
(3)在(2)中,設⊙P被直線l截得的弦長為a,問是否存在t的值,使a最大?若存在,求出t的值.

查看答案和解析>>

直線l的解析式為y=
3
4
x+8
,與x軸、y軸分別交于A、B兩點,P是x軸上一點,以P為圓心的圓與直線l相切于B點.
(1)求點P的坐標及⊙P的半徑R;
(2)若⊙P以每秒
10
3
個單位沿x軸向左運動,同時⊙P的半徑以每秒
2
3
個單位變小,設⊙P的運動時間為t秒,且⊙P始終與直線l有交點,試求t的取值范圍;
(3)在(2)中,設⊙P被直線l截得的弦長為a,問是否存在t的值,使a最大?若存在,求出t的值;
(4)在(2)中,設⊙P與直線l的一個交點為Q,使得△APQ與△ABO相似,請直接寫出此時精英家教網t的值.

查看答案和解析>>

直線y=-
4
3
x+8
與X軸Y軸分別交于點M,N,如果點P在坐標軸上,以點P為圓心,
12
5
為半徑的圓與直線y=-
4
3
x+8
相切,則符合要求的點P個數可能為( 。
A、1B、2C、3D、4

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视