又拋物線過兩點. 解得 查看更多

 

題目列表(包括答案和解析)

已知拋物線y=x2+4x+m(m為常數)經過點(0,4)。
(1)求m的值;
(2)將該拋物線先向右、再向下平移得到另一條拋物線,已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設為直線l2)與平移前的拋物線的對稱軸(設為直線l1)關于y軸對稱;它所對應的函數的最小值為-8;
① 試求平移后的拋物線的解析式;
②試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由。

查看答案和解析>>

已知拋物線yx2+4xm(m為常數)經過點(0,4).

(1)求m的值;

(2)將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設為直線l2)與平移前的拋物線的對稱軸(設為直線l1)關于y軸對稱;它所對應的函數的最小值為-8.

①試求平移后的拋物線的解析式;

②試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

查看答案和解析>>

如圖,拋物線的頂點為D,與x軸交于點A,B,與y軸交于點C,且OB = 2OC= 3.

   (1)求a,b的值;

   (2)將45°角的頂點P在線段OB上滑動(不與點B重合),該角的一邊過點D,另一邊與BD交于點Q,設P(x,0),y2=DQ,試求出y2關于x的函數關系式;

(3)在同一平面直角坐標系中,兩條直線x = m,x = m+分別與拋物線y1交于點E,G,與y2的函數圖象交于點F,H.問點E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.

【解析】通過B(3,0),C(0,)兩點,求出拋物線的解析式,

(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據勾股定理得jPD2-(1-x)2=4,又因為△MPQ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數關系式

(3)假設EF、HG圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標,求出EF、GH的長度,

通過四邊形EFHG的面積求出m的值

 

查看答案和解析>>

如圖,拋物線的頂點為D,與x軸交于點A,B,與y軸交于點C,且OB = 2OC= 3.

   (1)求a,b的值;

   (2)將45°角的頂點P在線段OB上滑動(不與點B重合),該角的一邊過點D,另一邊與BD交于點Q,設P(x,0),y2=DQ,試求出y2關于x的函數關系式;

(3)在同一平面直角坐標系中,兩條直線x = m,x = m+分別與拋物線y1交于點E,G,與y2的函數圖象交于點F,H.問點E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.

【解析】通過B(3,0),C(0,)兩點,求出拋物線的解析式,

(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據勾股定理得jPD2-(1-x)2=4,又因為△MPQ ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數關系式

(3)假設E、F、H、G圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標,求出EF、GH的長度,

通過四邊形EFHG的面積求出m的值

 

查看答案和解析>>

在平面直角坐標系中,拋物線過原點O,且與x軸交于另一點A(A在O右側),頂點為B.艾思軻同學用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數為4.5cm.
艾思軻同學將A的坐標記作(3,0),然后利用上述結論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F,探究梯形EFGH的面積S與線段EF的長度是否存在函數關系.
同學:如上述(3)(4)結論存在,請你幫艾思軻同學一起完成,如上述(3)(4)結論不存在,請你告訴艾思軻同學結論不存在的理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视