題目列表(包括答案和解析)
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關系是
,結合
,解得。
(2)由,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
1 |
|PK|2 |
1 |
|KQ|2 |
1 |
3 |
AP |
PB |
(本小題13分)在平面直角坐標系中,
是拋物線
的焦點,
是拋物線
上位于第一象限內的任意一點,過
三點的圓的圓心為
,點
到拋物線
的準線的距離為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點,使得直線
與拋物線
相切于點
?若存在,求出點
的坐標;若不存在,說明理由;
已知橢圓的左右焦點為
,拋物線C:
以F2為焦點且與橢圓相交于點
、
,點
在
軸上方,直線
與拋物線
相切.
(1)求拋物線的方程和點
、
的坐標;
(2)設A,B是拋物線C上兩動點,如果直線,
與
軸分別交于點
.
是以
,
為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com