故滿足條件的直線l有兩條.其方程分別為y=和 查看更多

 

題目列表(包括答案和解析)

下列是有關直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
與拋物線E:y2=4x有一個公共的焦點F,且兩曲線在第一象限的交點P的橫坐標為
2
3

(1)求橢圓C的方程;
(2)直線l:y=kx與拋物線E的交點為O,Q,與橢圓c的交點為M,N(N在線段OQ上),且|MO|=|NQ|. 問滿足條件的直線l有幾條,說明理由.

查看答案和解析>>

如圖,已知橢圓C:與拋物線E:y2=4x有一個公共的焦點F,且兩曲線在第一象限的交點P的橫坐標為
(1)求橢圓C的方程;
(2)直線l:y=kx與拋物線E的交點為O,Q,與橢圓c的交點為M,N(N在線段OQ上),且|MO|=|NQ|. 問滿足條件的直線l有幾條,說明理由.

查看答案和解析>>

如圖,已知橢圓C:數學公式與拋物線E:y2=4x有一個公共的焦點F,且兩曲線在第一象限的交點P的橫坐標為數學公式
(1)求橢圓C的方程;
(2)直線l:y=kx與拋物線E的交點為O,Q,與橢圓c的交點為M,N(N在線段OQ上),且|MO|=|NQ|. 問滿足條件的直線l有幾條,說明理由.

查看答案和解析>>

下列是有關直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有______.(請寫出所有正確的序號)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视