2.設函數在區間上是增函數.則的取值范圍是 查看更多

 

題目列表(包括答案和解析)

設函數數學公式在區間[1,3]上是單調遞增函數,則實數a的取值范圍是


  1. A.
    (-∞,-3]
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    (-∞,-3]∪數學公式

查看答案和解析>>

(09年湖北八校聯考文)設函數在區間上是增函數,則的取值范圍是(    )

A.  B.  C.   D.

查看答案和解析>>

設函數f(x)=lg(x2+ax-a-1),給出如下命題:
①函數f(x)必有最小值;
②若a=0時,則函數f(x)的值域是R;
③若a>0,且f(x)的定義域為[2,+∞),則函數f(x)有反函數;
④若函數f(x)在區間[2,+∞)上單調遞增,則實數a的取值范圍是[-4,+∞).
其中正確的命題序號是
 
.(將你認為正確的命題序號都填上)

查看答案和解析>>

設函數f(x)=-x3+bx(b為常數),若方程f(x)=0的根都在區間[-2,2]內,且函數f(x)在區間(0,1)上單調遞增,則b的取值范圍是
 

查看答案和解析>>

設函數f(x)=lg(x2+ax-a-1),給出下述命題:
①函數f(x)的值域為R;
②函數f(x)有最小值;
③當a=0時,函數f(x)為偶函數;
④若f(x)在區間[2,+∞)上單調遞增,則實數a的取值范圍a≥-4.
正確的命題是( 。
A、①③B、②③C、②④D、③④

查看答案和解析>>

一、             

二、11.210      12.         13.2    14.         15.

三.解答題:

16. 解:(1)

……………………………………………………………3分

由題意得周期,故…………………………………………4分

又圖象過點,所以

,而,所以

……………………………………………………6分

(2)當時,

∴當時,即時,是減函數

時,即時,是增函數

∴函數的單調減區間是,單調增區間是………………12分

17.解:記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、,則,且有,即

……………………………………………………………………6分

(2)由(1),.

則甲、乙、丙三人中恰有兩人回答對該題的概率為:

……………………12分

18. 解法一 公理化法

(1)當時,取的中點,連接,因為為正三角形,則,由于的中點時,

平面,∴平面,∴.………………………………………………4分

(2)當時,過,如圖所示,則底面,過,連結,則,為二面角的平面角,

,

,

,即二面角的大小為.…………………………………………………8分

(3)設到面的距離為,則,平面,

即為點到平面的距離,

解得,

到平面的距離為.…………………………………………………………………………12分

解法二 向量法

為原點,軸,過點與垂直的直線為軸,軸,建立空間直角坐標系,如圖所示,

,則

(1)由,

,

,………………………………4分

(2)當時,點的坐標是

設平面的一個法向量,則

,則,

又平面的一個法向量為

又由于二面角是一個銳角,則二面角的大小是.……………………8分

(3)設到面的距離為,

到平面的距離為.………………………………………………………………………12分

19. 解:(Ⅰ)由于

故在點處的切線方程是…………………………………………2分

,故表示同一條直線,

,.……6分

(Ⅱ) 由于,

,所以函數的單調區間是,…………………………8分

 

,

實數的取值范圍是.………………………………………………………12分

20. 解:(Ⅰ)設過與拋物線的相切的直線的斜率是,

則該切線的方程為:

,

都是方程的解,故………………………………………………4分

(Ⅱ)設

由于,故切線的方程是:,又由于點在上,則

,同理

則直線的方程是,則直線過定點.………………………………………8分

(Ⅲ)要使最小,就是使得到直線的距離最小,

到直線的距離,當且僅當時取等號.………………………………………………………………10分

,則

.…………13分

21. 解:(Ⅰ)由題意知……1分

 …………3分

檢驗知時,結論也成立

.………………………………………………………………………………4分

(Ⅱ) ①由于

………………………………………………9分

②若,其中,則有,則,

(其中表示不超過的最大整數),則當時,. ………………………………………………………14分

 

 

 


同步練習冊答案
久久精品免费一区二区视