題目列表(包括答案和解析)
已知函數。
(1)求函數的最小正周期和最大值;
(2)求函數的增區間;
(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?
【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為
,最大值為
。
第二問中,函數的單調區間與函數
的單調區間相同。故當
,解得x的范圍即為所求的區間。
第三問中,利用圖像將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
解:(1)函數的最小正周期為
,最大值為
。
(2)函數的單調區間與函數
的單調區間相同。
即
所求的增區間為
,
即
所求的減區間為
,
。
(3)將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
函數在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式
(2)函數的圖象經過怎樣的變換可得到
的圖象?
(3)若函數滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用
又因
又
函數
第二問中,利用的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,可得結論。
解:(1)
又因
又
函數
(2)的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,
故所有實數之和為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com