題目列表(包括答案和解析)
10-x |
10+x |
10-x |
10+x |
10-x |
10+x |
10-x |
10+x |
已知函數(
為實數).
(Ⅰ)當時,求
的最小值;
(Ⅱ)若在
上是單調函數,求
的取值范圍.
【解析】第一問中由題意可知:. ∵
∴
∴
.
當時,
;
當
時,
. 故
.
第二問.
當時,
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.轉化后解決最值即可。
解:(Ⅰ) 由題意可知:. ∵
∴
∴
.
當時,
;
當
時,
. 故
.
(Ⅱ) .
當時,
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.∵二次函數
的對稱軸為
,且
∴或
或
或
或
. 綜上
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣
.
直線PQ為:y=(x+c),兩條漸近線為:y=
x.由
,得:Q(
,
);由
,得:P(
,
).∴直線MN為:y-
=﹣
(x-
),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
.
【答案】B
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com