故Tn===(1-). 查看更多

 

題目列表(包括答案和解析)

已知數列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).數列{bn}的前n項和為Sn,其中b1=-,bn+1=-Sn(n∈N*).

(1)求數列{an}和{bn}的通項公式;

(2)若Tn+…+,求Tn的表達式.

 

查看答案和解析>>

已知函數f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.

(1)求函數f(x)的表達式;

(2)若數列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-,

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

數列{an}中,a1=8,a4=2且滿足an+2=2an+1-an  n∈N

(1)求數列{an}的通項公式;

(2)設Sn=|a1|+|a2|+…+|an|,求sn;

(3)設bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整數m,使得對任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,請說明理由。

查看答案和解析>>

設數列{an}的前n項和為Sn=2n2,{bn}為等比數列,且a1=b1,b1(a2-a1)=b2.

(1)求數列{an}和{bn}的通項公式;

(2)設cnan bn,求數列{cn}的前n項和Tn.

 

查看答案和解析>>

數列{an}中,a1=8,a4=2且滿足an+2=2an+1-an  n∈N

(1)求數列{an}的通項公式;

(2)設Sn=|a1|+|a2|+…+|an|,求sn;

(3)設bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整數m,使得對任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,請說明理由。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视