C:(分)B當選 查看更多

 

題目列表(包括答案和解析)

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當∠AMN=
 
時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
精英家教網

查看答案和解析>>

(1)計算:
8
-(
3
-1)0+|-1|
;
(2)我們已經學習了一元二次方程的四種解法:因式分解法,開平方法,配方法和公式法.請從以下一元二次方程中任選一個,并選擇你認為適當的方法解這個方程.
①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.

查看答案和解析>>

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),精英家教網N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.

查看答案和解析>>

(1)計算:
12
+(
2
+1)(
2
-1)+
2
×
18

(2)我們已經學習了一元二次方程的四種解法:因式分解法,開平方法,配方法和公式法,請從以下一元二次方程中任選一個,并選擇你認為適當的方法解這個方程.
①x2+x-1=0;②(x-1)2=2;③(x+1)2+(x+1)=0;④x2-2x=2.

查看答案和解析>>

(1)解不等式組:
3-x>0
4x
3
+
3
2
>-
x
6
,并把解集在數軸上表示出來.
(2)A,B,C三名大學生競選系學生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統計,如表一和圖一:
精英家教網
①請將表一和圖一中的空缺部分補充完整;
②競選的最后一個程序是由本系的300名學生進行投票,三位候選人的得票情況如圖二(沒有棄權票,每名學生只能推薦一個),請計算每人的得票數;
③若每票計1分,系里將筆試、口試、得票三項測試得分按4:3:3的比例確定個人成績,請計算三位候選人的最后成績,并根據成績判斷誰能當選.
精英家教網

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视