則.為所求距離. 查看更多

 

題目列表(包括答案和解析)

,為常數,離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負常數)上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內,求實數的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

第二問中,,,,

故直線的方程為,即

所以,同理可得:

借助于根與系數的關系得到即是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

(Ⅱ)設,,,

故直線的方程為,即,

所以,同理可得:,

,是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

,

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,則面PAD⊥底面 ABCD,

側棱PA=PD,底面ABCD為直角梯形,其中

BCAD,ABAD,AD=2AB=2BC=2,OAD中點.

(1)求證:PO⊥平面ABCD;

(2)求異面直線PBCD所成角的余弦值;

(3)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

已知拋物線C的對稱軸與y軸平行,頂點到原點的距離為5,若將拋物線C向上平移3個單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個單位,則所得拋物線過原點,求拋物線C的方程.

查看答案和解析>>

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
α
=
1
1
,屬于特征值1的一個特征向量為
β
=
&-2
;
(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標系與參數方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4-5:不等式選講,設函數f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视