題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:
=1:2,
:
=3:2,連結AQ,BP,設它們交于點R,若
=a,
=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調性;
(Ⅱ)設a=3,求在區間{1,
}上值域。期中e=2.71828…是自然對數的底數。
(本小題滿分14分)
已知數列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數,n為正整數。
(Ⅰ)對任意實數λ,證明數列{an}不是等比數列;
(Ⅱ)試判斷數列{bn}是否為等比數列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數列{bn}的前n項和。是否存在實數λ,使得對任意正整數n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,
,
、
分別為
、
的中點,將
沿
折起, 使
在平面
上的射影
恰為
的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一、 選擇題(每小題5分,共60分)
CADACD CDBDBA
二、填空題(每小題4分,共16分)
13.
14.
15.
16.
三、解答題
17.(本小題滿分12分)
解:(Ⅰ)∵,
由,得
兩邊平方:=
,∴
=
………………6分
(Ⅱ)∵,
∴,解得
,
又∵,
∴
,
∴,
,
設的夾角為
,則
,∴
即的夾角為
. …………… 12分
18. (本小題滿分12分)
解:(Ⅰ)小王在一年內領到駕照的概率為:
………………………(
4分)
(Ⅱ)的取值分別為1,2,3.
,
………………………(
8分)
所以小王參加考試次數的分布列為:
1
2
3
0.6
0.28
0.12
所以的數學期望為
……………………12分
19.(本小題滿分12分)
(Ⅰ)證明:由已知得,所以
,即
,
又,
,∴
,
平面
∴平面平面
.……………………………4分(文6分)
(Ⅱ)解:設的中點為
,連接
,則
∥
,
∴是異面直線
和
所成的角或其補角
由(Ⅰ)知,在
中,
,
,
∴.
所以異面直線和
所成的角為
.…………………8分(文12分)
(Ⅲ)(解法一)由已知得四邊形是正方形,
∴又
,∴
,
過點做
于
,連接
,則
,
則即二面角
的平面角,
在中,
,所以
,
又,由余弦定理得
,
所以二面角的大小為
.……………12分
(解法二)向量法
設為
的中點,則
,以
為坐標原點,
所在直線分別為
軸建立空間直角坐標系,
則,
設平面的法向量
由得
由
得
所以
同理得平面的法向量
,
所以所求二面角的大小為.………………12分
20.(本小題滿分12分)
解:(Ⅰ)
當時,
,∴
.
當
……………6分
(Ⅱ)當時,由(Ⅰ)的討論可知
即
∴
∴………………12分
21.(本小題滿分12分)
解:(Ⅰ)∵
∴
∴
令,則
,∴
,∴
∴.……………6分
(Ⅱ)證明:
∴
又∵,∴
∴
∴.………………12分
22.(本小題滿分14分)
解:(Ⅰ)①當直線軸時,
則,此時
,∴
.
(不討論扣1分)
②當直線不垂直于
軸時,
,設雙曲線的右準線為
,
作于
,作
于
,作
于
且交
軸于
根據雙曲線第二定義有:,
而到準線
的距離為
.
由,得:
,
∴,∴
,∵此時
,∴
綜上可知.………………………………………7分
(Ⅱ)設:
,代入雙曲線方程得
∴
令,則
,且
代入上面兩式得:
①
②
由①②消去得
即 ③
由有:
,綜合③式得
由得
,解得
∴的取值范圍為
…………………………14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com